Simulated Road Following Using Neuroevolution

نویسندگان

  • Aparajit Narayan
  • Elio Tuci
  • Frédéric Labrosse
چکیده

This paper describes a methodology wherein genetic algorithms were used to evolve neural network controllers for application in automatic road driving. The simulated controllers were capable of dynamically varying the mixture of colour components in the input image to ensure the ability to perform well across the entire range of possible environments. During the evolution phase, they were evaluated in a set of environments carefully designed to encourage the development of flexible and general-purpose solutions. Successfully evolved controllers were capable of navigating simulated roads across challenging test environments, each with different geometric and colour distribution properties. These controllers proved to be more robust and adaptable compared to the previous work done using this evolutionary approach. This was due to their improved dynamic colour perception capabilities, as they were now able to demonstrate feature extraction in three (red, green and blue)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroevolutionary reinforcement learning for generalized control of simulated helicopters

This article presents an extended case study in the application of neuroevolution to generalized simulated helicopter hovering, an important challenge problem for reinforcement learning. While neuroevolution is well suited to coping with the domain's complex transition dynamics and high-dimensional state and action spaces, the need to explore efficiently and learn on-line poses unusual challeng...

متن کامل

Evolving processing speed asymmetries and hemispheric interactions in a neural network model

CT ED P RO O Abstract Substantial experimental data suggests that the cerebral hemispheres have different processing speeds, and that this may contribute to hemispheric specialization. Here, we use evolutionary computation models to examine whether asymmetric hemispheric processing speeds and lateralization can emerge in neural networks from the need to respond quickly to stimuli and/or to mini...

متن کامل

Evolving behavioral specialization in robot teams to solve a collective construction task

This article comparatively tests three cooperative co-evolution methods for automated controller design in simulated robot teams. Collective NeuroEvolution (CONE) co-evolves multiple robot controllers using emergent behavioral specialization in order to increase collective behavior task performance. CONE is comparatively evaluated with two related controller design methods in a collective const...

متن کامل

Creating a Traffic Merging Behavior Using NeuroEvolution of Augmenting Topologies

One of the main goals in developing an autonomous vehicle is programming the action of merging into the traffic lane from an entrance ramp. We seek to create such a behavior through the use of NeuroEvolution of Augmenting Topologies (NEAT) by evolving an agent over many generations to maximize a certain prescribed fitness function, which encourages a smooth merging behavior without crashing. Ou...

متن کامل

Learning Crowd Behaviour with Neuroevolution Master ’ s thesis Pascal

Many different techniques are used to mimic human behaviour in order to create realistic crowd simulations. Agent-based approaches, while having the most potential for realism, traditionally required carefully hand-crafted rules. In recent years the focus has shifted from hand-crafting decision rules to learning them through methods such as reinforcement learning. In this work a closer look is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014